이번 강의에서는 손실함수와 최적화 방법에 대해서 배워보도록 한다. 손실함수는 주어진 input값들에 대하여 weight인 W값(행렬의 형태로 주어짐)이 얼마나 잘 기능하는지(결과를 얼마나 잘 예측하는지)를 측정하기위한 도구이다. 1. 손실함수(Loss Function) 위의 식은 손실함수의 기본 형태를 나타낸 것이다(강의 슬라이드 우측 하단). 각 요소요소를 살펴보도록 하자. L은 손실함수의 최종 값(각 클래스별 손실함수값의 평균)을 나타낸다. N은 입력 이미지의 갯수를 나타낸다. L_i는 i번째 input값에 대한 손실함수의 값을 나타낸다(정답과 얼마나 차이가 있는지). 그 안의 두 파라미터를 살펴보자. 함수 f는 인풋 이미지x_i와 W를 이용하여 예측한 결과값(지난 강의의 score)을 나타낸다. 그..